Genotype-by-environment interactions influencing the emergence of rpoS mutations in Escherichia coli populations.

نویسندگان

  • Thea King
  • Shona Seeto
  • Thomas Ferenci
چکیده

Polymorphisms in rpoS are common in Escherichia coli. rpoS status influences a trade-off between nutrition and stress resistance and hence fitness across different environments. To analyze the selective pressures acting on rpoS, measurement of glucose transport rates in rpoS+ and rpoS bacteria was used to estimate the role of F(nc), the fitness gain due to improved nutrient uptake, in the emergence of rpoS mutations in nutrient-limited chemostat cultures. Chemostats with set atmospheres, temperatures, pH's, antibiotics, and levels of osmotic stress were followed. F(nc) was reduced under anaerobiosis, high osmolarity, and with chloramphenicol, consistent with a reduced rate of rpoS enrichment in these conditions. F(nc) remained high, however, with alkaline pH and low temperature but rpoS sweeps were diminished. Under these conditions, F(sp), the fitness reduction due to lowered stress protection, became significant. We also estimated whether the fitness need for the gene was related to its regulation. No consistent pattern emerged between the level of RpoS and the loss of rpoS function in particular environments. This dissection allows an unprecedented view of the genotype-by-environment interactions controlling a mutational sweep and shows that both F(nc) and F(sp) are influenced by individual stresses and that additional factors contribute to selection pressure in some environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rpoS mutations and loss of general stress resistance in Escherichia coli populations as a consequence of conflict between competing stress responses.

The general stress resistance of Escherichia coli is controlled by the RpoS sigma factor (phi(S)), but mutations in rpoS are surprisingly common in natural and laboratory populations. Evidence for the selective advantage of losing rpoS was obtained from experiments with nutrient-limited bacteria at different growth rates. Wild-type bacteria were rapidly displaced by rpoS mutants in both glucose...

متن کامل

Escherichia coli Lacking RpoS Are Rare in Natural Populations of Non-Pathogens

The alternative sigma factor RpoS controls a large regulon that allows E. coli to respond to a variety of stresses. Mutations in rpoS can increase rates of nutrient acquisition at the cost of a decrease in stress resistance. These kinds of mutations evolve rapidly under certain laboratory conditions where nutrient acquisition is especially challenging. The frequency of strains lacking RpoS in n...

متن کامل

Strain variation in ppGpp concentration and RpoS levels in laboratory strains of Escherichia coli K-12.

Laboratory strains and natural isolates of Escherichia coli differ in their level of stress resistance due to strain variation in the level of the sigma factor sigma(S) (or RpoS), the transcriptional master controller of the general stress response. We found that the high level of RpoS in one laboratory strain (MC4100) was partially dependent on an elevated basal level of ppGpp, an alarmone res...

متن کامل

Divergence Involving Global Regulatory Gene Mutations in an Escherichia coli Population Evolving under Phosphate Limitation

Many of the important changes in evolution are regulatory in nature. Sequenced bacterial genomes point to flexibility in regulatory circuits but we do not know how regulation is remodeled in evolving bacteria. Here, we study the regulatory changes that emerge in populations evolving under controlled conditions during experimental evolution of Escherichia coli in a phosphate-limited chemostat cu...

متن کامل

Differential spectrum of mutations that activate the Escherichia coli bgl operon in an rpoS genetic background.

The bgl promoter is silent in wild-type Escherichia coli under standard laboratory conditions, and as a result, cells exhibit a beta-glucoside-negative (Bgl-) phenotype. Silencing is brought about by negative elements that flank the promoter and include DNA structural elements and sequences that interact with the nucleoid-associated protein H-NS. Mutations that confer a Bgl+ phenotype arise spo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 172 4  شماره 

صفحات  -

تاریخ انتشار 2006